Press Release

Theralase Partners with University of Ulm

Toronto, Ontario – November 12, 2015, Theralase Technologies Inc. (“Theralase” or the “Company”) (TLT:TSXV) (TLTFF:OTC), a leading biotechnology manufacturer focused on commercializing medical technologies to eliminate pain and destroy cancer, announced today that it has partnered with the University of Ulm (“Ulm”) to investigate the localization of its lead Photo Dynamic Compound (“PDC”) within cancer cells and shine more proverbial light on the Mechanism of Action (“MOA”) on how this PDC is so effective in the destruction of cancer cells when laser light activated.

The scope of the current project between Ulm and Theralase is to investigate the localization (where do they locate in the cell) and the MOA (how they work on the cell) of Theralase’s lead PDC, TLD-1433, currently under investigation for the destruction of Non-Muscle Invasive Bladder Cancer (“NMIBC”).

The head of the core facility “Confocal and Multiphoton Microscopy”, located in the Medical Faculty of Ulm, is Dr. Angelika Rueck, who will be conducting the research.

The heart of the facility consists of two laser-scanning microscopes capable of live cell imaging through detailed Fluorescence Lifetime Imaging Microscopy (“FLIM”) and Phosphorescence Lifetime Imaging Microscopy (“PLIM”).

More detail on the facility, led by Dr. Rueck, is available at:

http://fakultaet.medizin.uni-ulm.de/fileadmin/Forschung/research-infrastructure.pdf

Dr. Rueck was instrumental in assisting Theralase with microscopy analysis of its recent research entitled, “A novel class of ruthenium-based photosensitizers effectively kills in vitro cancer cells and in vivo tumors”.


Under the current research agreement, Dr. Rueck will determine the localization and MOA of TLD-1433 through the following phases:

Phase 1 - Intracellular localization of TLD-1433 and cytotoxicity (cell kill) will be investigated in two (2) different urothelial carcinoma tumour cell lines (HT1376 and T24) and one (1) normal human urothelial cell line as a function of time.

Phase 2 - FLIM and PLIM will be completed to more fully understand how TLD-1433 affects cancer cell metabolism and to identify the MOA of mediated cell death by this PDC.

Phase 3 - Cell metabolism in the three cell lines, in the presence and not of TLD-1433 will be analyzed.

Roger Dumoulin-White, President and CEO, Theralase stated that, “It is indeed a great pleasure to work with a scientist as renowned in her field as Dr. Rueck. Her research will be instrumental in helping Theralase to unlock the exact mechanisms of our PDCs in cancer cells and provide MOAs as to why the
Press Release

Theralase PDCs are so effective in the destruction of cancer cells. I look forward to reporting out on Dr. Rueck’s research in due course.”

About Theralase Technologies Inc.
Theralase Technologies Inc. (“Theralase®”) (TSXV: TLT) (TLTFF: OTC) in its Therapeutic Laser Technology Division designs, manufactures and markets patented super-pulsed laser technology indicated for the: elimination of pain, reduction of inflammation and dramatic acceleration of tissue healing for numerous nerve, muscle and joint conditions. Theralase’s Photo Dynamic Therapy Division researches and develops specially designed molecules called Photo Dynamic Compounds, which are able to localize to cancer cells and then when laser light activated, effectively destroy them.

Additional information is available at www.theralase.com and www.sedar.com.

Theralase Technologies Inc. was recognized as a TSX Venture 50® company in 2015. TSX Venture 50 is a trademark of TSX Inc. and is used under license.

This press release contains forward-looking statements, which reflect the Company’s current expectations regarding future events. The forward-looking statements involve risks and uncertainties. Actual results could differ materially from those projected herein. The Company disclaims any obligation to update these forward-looking statements.

Neither TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in the policies of the TSX Venture Exchanges) accepts responsibility for the adequacy or accuracy of this release.

For More Information:
Roger Dumoulin-White
President & CEO
1.866.THE.LASE (843-5273) ext. 225
416.699.LASE (5273) ext. 225
rwhite@theralase.com
www.theralase.com